√ Rumus kalor : Suhu, Jenis, Contoh dan Penjelasannya

Diposting pada
3.2/5 - (80 votes)

Pendahuluan

Rumus kalor – Sebuah ketel yang berisi air dingin dan diletakkan di atas kompor, maka suhu air tersebut akan naik. Hal tersebut kita katakan bahwa kalor mengalir dari kompor ke air yang dingin. Ketika dua benda yang suhunya berbeda diletakkan saling bersentuhan, kalor akan mengalir seketika dari benda yang suhunya tinggi ke benda yang suhunya rendah.


Aliran kalor seketika ini selalu dalam arah yang cenderung menyamakan suhu. Jika kedua benda itu disentuhkan cukup lama sehingga suhu keduanya sama, keduanya dikatakan dalam keadaan setimbang termal, dan tidak ada lagi kalor yang mengalir di antara-nya. Sebagai contoh, pada saat termometer tubuh pertama kali dimasukkan ke mulut pasien, kalor mengalir dari mulut pasien tersebut ke termometer, ketika pembacaan suhu berhenti naik, termometer setimbang dengan suhu tubuh orang tersebut.

  • Suhu (Temperatur)

Dalam kehidupan sehari-hari, suhu merupakan ukuran mengenai panas atau dinginnya suatu zat atau benda. Oven yang panas dikatakan bersuhu tinggi, sedangkan es yang membeku dikatakan memiliki suhu rendah.

Suhu dapat mengubah sifat zat, contohnya sebagian besar zat akan memuai ketika dipanaskan. Sebatang besi lebih panjang ketika dipanaskan daripada dalam keadaan dingin. Jalan dan trotoar beton memuai dan menyusut terhadap perubahan suhu. Hambatan listrik dan materi zat juga berubah terhadap suhu. Demikian juga warna yang dipancarkan benda, paling tidak pada suhu tinggi. Kalau kita perhatikan, elemen pemanas kompor listrik memancarkan warna merah ketika panas. Pada suhu yang lebih tinggi, zat padat seperti besi bersinar jingga atau bahkan putih. Cahaya putih dari bola lampu pijar berasal dari kawat tungsten yang sangat panas.

Alat yang dirancang untuk mengukur suhu suatu zat disebut termometer. Ada beberapa jenis termometer, yang prinsip kerjanya bergantung pada beberapa sifat materi yang berubah terhadap suhu. Sebagian besar termometer umumnya bergantung pada pemuaian materi terhad ap naiknya suhu. Id e pertama penggunaan termometer adalah oleh Galileo, yang menggunakan pemuaian gas, tampak seperti pad a Gambar 6.2

Termometer umum saat ini terdiri dari tabung kaca dengan ruang di tengahnya yang diisi air raksa atau alkohol yang diberi warna merah, seperti termometer pertama yang dapat digunakan seperti pada Gambar 6.3(a). Pada Gambar 6.3(b), menunjukkan termometer klinis pertama dengan jenis berbeda, juga berdasarkan pada perubahan massa jenis terhadap suhu.

Untuk mengukur suhu secara kuantitatif, perlu didefinisikan semacam skala numerik. Skala yang paling banyak dipakai sekarang adalah skala Celsius, kadang disebut skala Centigrade. Di Amerika Serikat, skala Fahrenheit juga umum digunakan. Skala yang paling penting dalam sains adalah skala absolut atau Kelvin.

Satu cara untuk mendefinisikan skala suhu adalah dengan memberikan nilai sembarang untuk dua suhu yang bisa langsung dihasilkan. Untuk skala Celsius dan Fahrenheit, kedua titik tetap ini dipilih sebagai titik beku dan titik didih dari air, keduanya diambil pada tekanan atmosfer.


Titik beku zat didefinisikan sebagai suhu di mana fase padat dan cair ada bersama dalam kesetimbangan, yaitu tanpa adanya zat cair total yang berubah menjadi padat atau sebaliknya. Secara eksperimen, hal ini hanya terjadi pada suhu tertentu, untuk tekanan tertentu. Dengan cara yang sama, titik didih didefinisikan sebagai suhu di mana zat cair dan gas ada bersama dalam kesetimbangan. Karena titik-titik ini berubah terhadap tekanan, tekanan harus ditentukan (biasanya sebesar 1 atm).

Pada skala Celsius, titik beku dipilih 0 oC (“nol derajat Celsius”) dan titik didih 100 oC. Pada skala Fahrenheit, titik beku ditetapkan 32 oF dan titik didih 212 oF. Termometer praktis dikalibrasi dengan menempatkannya di lingkungan yang telah diatur dengan teliti untuk masing-masing dari kedua suhu tersebut dan menandai posisi air raksa atau penunjuk skala.


Untuk skala Celsius, jarak antara kedua tanda tersebut dibagi menjadi seratus bagian yang sama dan menyatakan setiap derajat antara 0 oC dan 100 oC. Untuk skala Fahrenheit, kedua titik diberi angka 32 oF dan 212 oF, jarak antara keduanya dibagi menjadi 180 bagian yang sama. Untuk suhu di bawah titik beku air dan di atas titik didih air, skala dapat dilanjutkan dengan menggunakan selang yang memiliki jarak sama. Bagaimana pun, termometer biasa hanya dapat digunakan pada jangkauan suhu yang terbatas karena keterbatasannya sendiri.

Pemuaian

Pemuaian adalah bertambah besarnya ukuran suatu benda karena kenaikan suhu yang terjadi pada benda tersebut. Kenaikan suhu yang terjadi menyebabkan benda itu mendapat tambahan energi berupa kalor yang menyebabkan molekul-molekul pada benda tersebut bergerak lebih cepat. Setiap zat mem-punyai kemampuan memuai yang berbeda-beda. Gas, misalnya, memiliki kemampuan memuai lebih besar daripada zat cair dan zat padat. Adapun kemampuan memuai zat cair lebih besar daripada zat padat. Tabel 6.1 menunjukkan koefisien muai panjang pada berbagai zat.

  • Pemuaian Zat Padat

  1. Muai Panjang

Percobaan menunjukkan bahwa perubahan panjang

  • pada semua zat padat, dengan pendekatan yang sangat

baik, berbanding lurus dengan perubahan suhu           T .

Jika perubahan suhu T = TT0 bernilai negatif, maka L = LL0 juga negatif, berarti panjang benda memendek (menyusut).

Nilai koefisien muai panjang ( á ) untuk berbagai zat pada suhu 20 oC dapat dilihat pada Tabel 6.1. Perlu diperhatikan bahwa koefisien muai panjang ( á ) sedikit bervariasi terhadap suhu. Hal ini yang menyebabkan mengapa termometer yang dibuat dari bahan yang berbeda tidak memberikan nilai yang tepat sama.

  • Muai Luas

Apabila suatu benda berbentuk bidang atau luasan, misalnya bujur sangkar tipis dengan sisi L0, dipanaskan hingga suhunya naik sebesar T , maka bujur sangkar tersebut akan memuai pada kedua sisinya.

Luas benda mula-mula adalah A0  = L02.

Pada saat dipanaskan, setiap sisi benda memuai sebesar L . Hal ini berarti akan membentuk bujur sangkar baru dengan sisi (L0L ). Dengan demikian, luas benda saat

dipanaskan adalah:

  • = (L0 + L )2  = L02  + 2L0   L  + (  L )2

Karena L cukup kecil, maka nilai ( L )2 mendekati nol sehingga dapat diabaikan. Dengan anggapan ini diperoleh luas benda saat dipanaskan seperti berikut ini.

  • = L02 + 2L0. L

  • Muai Volume

Apabila suatu benda berbentuk volume atau padatan, misalnya kubus dengan sisi L0 dipanaskan hingga suhunya naik sebesar T , maka kubus tersebut akan memuai pada setiap sisinya.

Volume benda mula-mula adalah: V0  = V03.

Pada saat dipanaskan, setiap sisi benda (kubus) memuai sebesar L . Hal ini berarti akan membentuk kubus baru dengan sisi (L0+ L ). Dengan demikian volume benda saat dipanaskan adalah:

  • Pemuaian Zat Cair

Seperti halnya zat padat, zat cair akan memuai volumenya jika dipanaskan. Sebagai contoh, ketika kita memanaskan panci yang berisi penuh dengan air, apa yang akan terjadi pada air di dalam panci tersebut? Pada suhu yang sangat tinggi, sebagian dari air tersebut akan tumpah. Hal ini berarti volume air di dalam panci tersebut memuai atau volumenya bertambah.

Sebagian besar zat akan memuai secara beraturan terhadap penambahan suhu. Akan tetapi, air tidak mengikuti pola yang biasa. Bila sejumlah air pada suhu 0 oC dipanaskan, volumenya menurun sampai mencapai suhu 4 oC. Kemudian, suhu di atas 4 oC air berperilaku normal dan volumenya memuai terhadap bertambahnya suhu, seperti Gambar 6.10. Pada suhu di antara 0 oC dan 4 oC air menyusut dan di atas suhu 4 oC air memuai jika dipanaskan.


Sifat pemuaian air yang tidak teratur ini disebut anomali air. Dengan demikian, air memiliki massa jenis yang paling tinggi pada 4 oC. Perilaku air yang menyimpang ini sangat penting untuk bertahannya kehidupan air selama musim dingin. Ketika suhu air di danau atau sungai di atas 4 oC dan mulai mendingin karena kontak dengan udara yang dingin, air di permukaan terbenam karena massa jenisnya yang lebih besar dan digantikan oleh air yang lebih hangat dari bawah.


Campuran ini berlanjut sampai suhu mencapai 4 oC. Sementara permukaan air menjadi lebih dingin lagi, air tersebut tetap di permukaan karena massa jenisnya lebih kecil dari 4 oC air di sebelah bawahnya. Air di permukaan kemudian membeku, dan es tetap di permukaan karena es mempunyai massa jenis lebih kecil dari air.

Perilaku yang tidak biasa dari air di bawah 4 oC, menyebabkan jarang terjadi sebuah benda yang besar membeku seluruhnya, dan hal ini dibantu oleh lapisan es di permukaan, yang berfungsi sebagai isolator untuk memperkecil aliran panas ke luar dari air ke udara dingin di atasnya. Tanpa adanya sifat yang aneh tapi istimewa dari air ini, kehidupan di planet kita mungkin tidak bisa berlangsung.

Air tidak hanya memuai pada waktu mendingin dari 4 oC sampai 0 oC, air juga memuai lebih banyak lagi saat membeku menjadi es. Hal inilah yang menyebabkan es batu terapung di air dan pipa pecah ketika air di dalamnya membeku.

  • Pemuaian Gas

Persamaan (6.12) yang memperlihatkan perubahan volume zat cair akibat pemuaian, ternyata tidak cukup untuk mendeskripsikan pemuaian gas. Hal ini karena pemuaian gas tidak besar, dan karena gas umumnya memuai untuk memenuhi tempatnya. Persamaan tersebut hanya berlaku jika tekanan konstan. Volume gas sangat bergantung pada tekanan dan suhu. Dengan demikian, akan sangat bermanfaat untuk menentukan hubungan antara volume, tekanan, temperatur, dan massa gas. Hubungan seperti ini disebut persamaan keadaan. Jika keadaan sistem berubah, kita akan selalu menunggu sampai suhu dan tekanan mencapai nilai yang sama secara keseluruhan.

Hukum Boyle


Untuk jumlah gas tertentu, ditemukan secara eksperimen bahwa sampai pendekatan yang cukup baik, volume gas berbanding terbalik dengan tekanan yang diberikan padanya ketika suhu dijaga konstan, yaitu:


Pengaruh Kalor terhadap Suatu Zat


Setiap ada perbedaan suhu antara dua sistem, maka akan terjadi perpindahan kalor. Kalor mengalir dari sistem bersuhu tinggi ke sistem yang bersuhu lebih rendah. Apa sajakah pengaruh kalor terhadap suatu sistem atau benda?


  1. Kalor dapat Mengubah Suhu Benda

Kalor merupakan salah satu bentuk energi, sehingga dapat berpindah dari satu sistem ke sistem yang lain karena adanya perbedaan suhu. Sebaliknya, setiap ada perbedaan suhu antara dua sistem maka akan terjadi perpindahan kalor. Sebagai contoh, es yang dimasukkan ke dalam gelas berisi air panas, maka es akan mencair dan air menjadi dingin. Karena ada perbedaan suhu antara es dan air maka air panas melepaskan sebagian kalornya sehingga suhunya turun dan es menerima kalor sehingga suhunya naik (mencair).

  • Kalor dapat Mengubah Wujud Zat

Kalor yang diberikan pada zat dapat mengubah wujud zat tersebut. Perubahan wujud yang terjadi ditunjukkan oleh Gambar 6.15. Cobalah mengingat kembali pelajaran SMP, dan carilah contoh dalam kehidupan sehari-hari yang menunjukkan perubahan wujud zat karena dipengaruhi kalor

  • Kalor sebagai Transfer Energi

Kalor mengalir dengan sendirinya dari suatu benda yang suhunya lebih tinggi ke benda lain dengan suhu yang lebih rendah. Pada abad ke-18 diilustrasikan aliran kalor sebagai gerakan zat fluida yang disebut kalori

Bagaimanapun, fluida kalori tidak pernah dideteksi. Selanjutnya pada abad ke-19, ditemukan berbagai fenomena yang berhubungan dengan kalor, dapat dideskripsikan secara konsisten tanpa perlu menggunakan model fluida. Model yang baru ini memandang kalor berhubungan dengan kerja dan energi. Satuan kalor yang masih umum dipakai sampai saat ini yaitu kalori. Satu kalori didefinisikan sebagai kalor yang dibutuhkan untuk menaikkan suhu 1 gram air sebesar 1oC. Terkadang satuan yang digunakan adalah kilokalori (kkal) karena dalam jumlah yang lebih besar, di mana 1 kkal = 1.000 kalori. Satu kilokalori (1 kkal) adalah kalor yang dibutuhkan untuk menaikkan suhu 1 kg air sebesar 1 oC.


Pendapat bahwa kalor berhubungan dengan energi dikerjakan lebih lanjut oleh sejumlah ilmuwan pada tahun 1800-an, terutama oleh seorang ilmuwan dari Inggris, James Prescott Joule (1818 – 1889). Joule melakukan sejumlah percobaan yang penting untuk menetapkan pandangan bahwa kalor merupakan bentuk transfer energi. Salah satu bentuk percobaan Joule ditunjukkan secara sederhana seperti pada Gambar 6.16. Beban yang jatuh menyebabkan roda pedal berputar. Gesekan antara air dan roda pedal menyebabkan suhu air naik sedikit (yang sebenarnya hampir tidak terukur oleh Joule). Kenaikan suhu yang sama juga bisa diperoleh dengan memanaskan air di atas kompor. Joule menentukan bahwa sejumlah kerja tertentu yang dilakukan selalu ekivalen dengan sejumlah masukan kalor tertentu. Secara kuantitatif, kerja 4,186 joule (J) ternyata ekivalen dengan 1 kalori (kal) kalor. Nilai ini dikenal sebagai tara kalor mekanik.

4,186 J = 1 kal

4,186 ×  103  J = 1 kkal

  1. Kalor Jenis (c ) dan Kapasitas Kalor (C )

Apabila sejumlah kalor diberikan pada suatu benda, maka suhu benda itu akan naik. Kemudian yang menjadi pertanyaan, seberapa besar kenaikan suhu suatu benda tersebut? Pada abad ke-18, sejumlah ilmuwan melakukan percobaan dan menemukan bahwa besar kalor Q yang d iperlukan untuk mengubah suhu suatu zat yang besarnya T sebanding dengan massa m zat tersebut.

Untuk suatu zat tertentu, misalnya zatnya berupa bejana kalorimeter ternyata akan lebih memudahkan jika faktor massa (m) dan kalor jenis (c) dinyatakan sebagai satu kesatuan. Faktor m dan c ini biasanya disebut kapasitas kalor, yaitu banyaknya kalor yang diperlukan untuk menaikkan suhu suatu zat sebesar 1oC.

  1. Hukum Kekekalan Energi Kalor (Asas

Black)


Apabila dua zat atau lebih mempunyai suhu yang berbeda dan terisolasi dalam suatu sistem, maka kalor akan mengalir dari zat yang suhunya lebih tinggi ke zat yang suhunya lebih rendah. Dalam hal ini, kekekalan energi memainkan peranan penting. Sejumlah kalor yang hilang dari zat yang bersuhu tinggi sama dengan kalor yang didapat oleh zat yang suhunya lebih rendah.

Pertukaran energi kalor merupakan dasar teknik yang dikenal dengan nama kalorimetri, yang merupakan pengukuran kuantitatif dari pertukaran kalor. Untuk melakukan pengukuran kalor yang diperlukan untuk menaikkan suhu suatu zat digunakan kalorimeter. Gambar 6.17 menunjukkan skema kalorimeter air sederhana. Salah satu kegunaan yang penting dari kalorimeter adalah dalam penentuan kalor jenis suatu zat. Pada teknik yang dikenal sebagai “metode campuran”, satu sampel zat dipanaskan sampai temperatur tinggi yang diukur dengan akurat, dan dengan cepat ditempatkan pada air dingin kalorimeter. Kalor yang hilang pada sampel tersebut akan diterima oleh air dan kalorimeter. Dengan mengukur suhu akhir campuran tersebut, maka dapat dihitung kalor jenis zat tersebut.

  1. Kalor Laten dan Perubahan Wujud Zat

Ketika suatu zat berubah wujud dari padat ke cair, atau dari cair ke gas, sejumlah energi terlibat pada per-ubahan wujud zat tersebut. Sebagai contoh, pada tekanan tetap 1 atm sebuah balok es (massa 5 kg) pada suhu -40 oC diberi kalor dengan kecepatan tetap sampai semua es berubah menjadi air, kemudian air (wujud cair) dipanas-kan sampai suhu 100 oC dan diubah menjadi uap di atas suhu 100 oC.

setengah dari es tetap dan setengahnya telah berubah menjadi air. Kemudian setelah kira-kira 80 kkal (330 J) kalor ditambahkan, semua es telah berubah menjadi air, masih pada suhu 0 oC. Penambahan kalor selanjutnya menyebabkan suhu air naik kembali, dengan kecepatan sebesar 1 oC/kkal. Ketika 100 oC telah dicapai, suhu kembali konstan sementara kalor yang ditambahkan mengubah air (cair) menjadi uap. Kalor sekitar 540 kkal (2.260 kJ) dibutuhkan untuk mengubah 1 kg air menjadi uap seluruhnya. Setelah itu, kurva naik kembali yang menandakan suhu uap naik selama kalor ditambahkan.

Kalor yang diperlukan untuk mengubah 1 kg zat dari padat menjadi cair disebut kalor lebur, LB. Kalor lebur air dalam SI adalah sebesar 333 kJ/kg (3,33 × 105 J/kg), nilai ini setara dengan 79,7 kkal/kg. Sementara itu, kalor yang dibutuhkan untuk mengubah suatu zat dari wujud cair menjadi uap disebut kalor penguapan, dengan simbol LU. Kalor penguapan air dalam satuan SI adalah 2.260 kJ/kg (2,26 × 106 J/kg), nilai ini sama dengan 539 kkal/kg. Kalor yang diberikan ke suatu zat untuk peleburan atau penguapan disebut kalor laten

Untuk zat yang lainnya, grafik hubungan suhu sebagai fungsi kalor yang ditambahkan hampir sama dengan Gambar 6.18, tetapi suhu titik-lebur dan titik-didih berbeda. Besar kalor lebur dan kalor penguapan untuk berbagai zat tampak seperti pada Tabel 6.3.

Kalor lebur dan kalor penguapan suatu zat juga mengacu pada jumlah kalor yang dilepaskan oleh zat tersebut ketika berubah dari cair ke padat, atau dari gas ke uap air. Dengan demikian, air mengeluarkan 333 kJ/kg ketika menjadi es, dan mengeluarkan 2.260 kJ/kg ketika berubah menjadi air.


Tentu saja, kalor yang terlibat dalam perubahan wujud tidak hanya bergantung pada kalor laten, tetapi juga pada massa total zat tersebut, dirumuskan:

Perpindahan Kalor

Kalor berpindah dari satu tempat atau benda ke tempat atau benda lainnya dengan tiga cara, yaitu konduksi (hantaran), konveksi (aliran), dan radiasi (pancaran).

  1. Konduksi (Hantaran)

Ketika sebuah batang logam dipanaskan pada salah satu ujungnya, atau sebuah sendok logam diletakkan di dalam secangkir kopi yang panas, beberapa saat kemudian, ujung yang kita pegang akan segera menjadi panas walaupun tidak bersentuhan langsung dengan sumber panas. Dalam hal ini kita katakan bahwa kalor dihantarkan dari ujung yang panas ke ujung lain yang lebih dingin.


Konduksi atau hantaran kalor pada banyak materi dapat digambarkan sebagai hasil tumbukan molekul-molekul. Sementara satu ujung benda dipanaskan, molekul-molekul di tempat itu bergerak lebih cepat. Sementara itu, tumbukan dengan molekul-molekul yang langsung berdekatan lebih lambat, mereka mentransfer sebagian energi ke molekul-molekul lain, yang lajunya kemudian bertambah. Molekul-molekul ini kemudian juga mentransfer sebagian energi mereka dengan molekul-molekul lain sepanjang benda tersebut. Dengan demikian, energi gerak termal ditransfer oleh tumbukan molekul sepanjang benda. Hal inilah yang mengakibatkan terjadinya konduksi.


Konduksi atau hantaran kalor hanya terjadi bila ada perbedaan suhu. Berdasarkan eksperimen, menunjukkan bahwa kecepatan hantaran kalor melalui benda yang se-banding dengan perbedaan suhu antara ujung-ujungnya.

Kecepatan hantaran kalor juga bergantung pada ukuran dan bentuk benda. Untuk mengetahui secara kuantitatif, perhatikan hantaran kalor melalui sebuah benda uniform tampak seperti pada Gambar 6.20.


Besarnya kalor Q tiap selang waktu tertentu di-rumuskan sebagai berikut:

Konduktivitas termal (k) berbagai zat ditunjukkan seperti pada Tabel 6.4. Suatu zat yang memiliki konduktivitas termal (k) besar, menghantarkan kalor dengan cepat dan dinamakan konduktor yang baik. Umumnya logam masuk dalam kategori ini, walaupun ada variasi yang besar antara logam-logam tersebut seperti diperlihatkan pada Tabel 6.4.


Suatu zat yang memiliki konduktivitas termal (k) kecil, seperti fiberglass, polyurethane, dan bulu merupakan panghantar kalor yang buruk yang disebut isolator.

demikianlah artikel dari dosenmipa.com mengenai Rumus kalor, semoga artikel ini bermanfaat bagi anda semuanya.