√ Sifat Bangun Datar : Trapesium, Segitiga, Persegi

Diposting pada
4.3/5 - (27 votes)

Bangun Datar

Dalam ilmu ekonomi, dikenal berbagai bentuk perusahaan seperti firma, perusahaan perorangan, Perseroan Terbatas (PT), dan lain sebagainya. Perusahaan-perusahaan tersebut memiliki ciri khusus masing-masing yang tidak sama.


Anda dapat mengatakan perusahaan tersebut termasuk Perseroan Terbatas, perusahaan perorangan, atau firma setelah melihat berbagai aspek seperti kepemilikan modalnya, peran, atau tanggung jawab yang ditanggung oleh masing-masing individu. Analogi dengan bentuk-bentuk perusahaan, dalam matematika, yaitu geometri dikenal bentuk-bentuk bangun datar seperti persegipanjang,


trapesium, segitiga, persegi, dan sebagainya. Sama seperti bentuk-bentuk perusahaan, setiap jenis bangun datar tersebut memiliki ciri-ciri khas yang berbeda dari bangun lainnya. Anda dapat mengatakan apakah bangun tersebut merupakan persegi, segitiga, atau trapesium dengan melihat sisinya, sudutnya, simetri lipatnya, dan sifat lainnya.


Sebelum mempelajari sifat-sifat yang dimiliki bangun datar, pelajarilah uraian berikut. Diagonal adalah garis yang ditarik dari sudut di hadapannya. Perhatikan Gambar 4.6

Perhatikan Gambar 4.6 (a), (b), dan (c). Garis AC dan BD merupakan diagonal pada bangun ABCD, garis FH dan EG merupakan diagonal pada bangun EFGH, serta garis JL dan IK merupakan diagonal pada bangun IJKL. Pada bagian ini, Anda akan mempelajari beberapa bentuk bangun datar, sifat-sifatnya, keliling, dan luasnya.


Bentuk bangun datar yang akan dipelajari pada Subbab ini adalah persegipanjang, persegi, segitiga, jajargenjang, layang-layang, dan trapesium.

  1. Persegipanjang

Coba Anda perhatikan papan tulis di kelas Anda. Papan tulis memiliki sisi-sisi yang berhadapan sama panjang dan keempat sudutnya siku-siku. Bangun datar yang memiliki ciri-ciri seperti papan tulis di kelas Anda disebut persegipanjang. Gambar berikut menunjukkan bentuk geometri persegipanjang.

Pada persegipanjang, sisi yang lebih panjang dinamakan panjang, dapat dinyatakan dengan p, dan sisi yang lebih pendek dinamakan lebar, dapat dinyatakan dengan l. Pada persegipanjang ABCD, AB = DC = p dan AD = BC = l. Keliling suatu bangun datar adalah jumlah panjang sisisisi yang dimiliki oleh bangun datar tersebut. Perhatikan persegipanjang ABCD berikut.

Dengan demikian, rumus keliling persegipanjang adalah

Adapun luas persegipanjang adalah perkalian panjang dan lebarnya.

  1. Persegi

Tentu Anda pernah melihat sebuah papan catur. Papan catur memiliki jumlah kotak yang sama, baik horizontal maupun vertikal. Papan catur juga memiliki empat sudut siku-siku. Bidang datar yang memiliki ciri-ciri seperti papan catur disebut persegi. Papan catur jika digambar permukaannya akan tampak seperti persegi ABCD berikut.

Keliling persegi adalah jumlah panjang semua sisinya. Jika panjang sisi persegi dinyatakan dengan s maka keliling persegi adalah sebagai berikut

  1. Segitiga

Perhatikan segitiga pengaman yang Anda lihat di jalan raya. Biasanya, segitiga pengaman digunakan untuk memberi peringatan pada pengguna jalan supaya lebih berhati-hati karena ada sesuatu yang berbahaya.


Misalnya, ada lubang di jalan atau sebuah mobil yang mengangkut barang berbahaya. Segitiga pengaman memiliki tiga sisi dan tiga titik sudut. Seperti namanya, segitiga pengaman adalah contoh bangun segitiga. Perhatikan segitiga ABC pada gambar berikut.

Segitiga ABC dibatasi oleh sisi AB, BC, dan CA Jumlah semua sudut pada segitiga adalah 180°. Jadi, pada segitiga ABC, A + B + C = 180°. Berdasarkan panjang sisinya, segitiga dibagi ke dalam tiga jenis, yaitu segitiga samasisi, segitiga samakaki, dan segitiga tidak beraturan.

Segitiga samasisi adalah yang semua sisinya sama panjang. Pada Gambar 4.12(a), segitiga ABC adalah segitiga samasisi, di mana AB = BC = AC. Segitiga samakaki adalah segitiga yang kedua sisinya sama panjang. Segitiga PQR adalah segitiga sama kaki dengan PR = QR.


Segitiga sebarang adalah segitiga yang semua sisinya tidak sama panjang. Segitiga UVW adalah segitiga tidak beraturan dengan UV ≠ VW ≠ UW. Berdasarkan besar sudutnya, segitiga dibagi ke dalam tiga jenis, yaitu segitiga siku-siku, segitiga lancip, dan segitiga tumpul.

Segitiga siku-siku adalah segitiga yang salah satu sudutnya siku-siku. Pada Gambar 4.13(a), segitiga ABC adalah segitiga siku-siku, dengan A adalah sudut siku-sikunya. Segitiga lancip adalah segitiga yang besar semua sudutnya kurang dari 90°. Segitiga PQR adalah segitiga lancip dengan besar P < 90°, Q < 90°, dan R < 90°.


Segitiga tumpul adalah segitiga yang besar salah satu sudutnya lebih dari 90°. Segitiga UVW adalah segitiga tumpul dengan sudut tumpulnya adalah V. Seperti pada bangun datar lainnya, keliling segitiga diperoleh dengan menjumlahkan ketiga sisinya. Perhatikan segitiga ABC berikut.

Jika AB, BC, AC adalah sisi-sisi segitiga dengan panjang sisi berturut-tutut s1 , s2 , dan s3 maka keliling segitiga ABC adalah

Sebelum mempelajari luas segitiga, Anda akan mempelajari terlebih dahulu tinggi segitiga. Tinggi segitiga adalah garis yang melalui salah satu titik sudut segitiga dan tegak lurus dengan sisi yang berhadapan dengan titik sudut tersebut. Pada segitiga ABC berikut, titik C berhadapan dengan sisi AB. Garis yang melalui titik C dan tegak lurus dengan AB adalah tinggi segitiga. Adapun AB disebut alas segitiga.

Jika BC adalah alas segitiga ABC maka segitiga ABC adalah garis yang melalui titik A dan tegak lurus BC. Begitu juga AC adalah alas segitiga ABC, maka tinggi segitiga ABC adalah garis yang melalui titik A dan tegak lurus AC.

Selanjutnya, perhatikan Gambar 4.16. Garis-garis x pada segitiga ABC berikut bukan tinggi segitiga ABC karena tidak tegak lurus terhadap alasnya.

Jika alas segitiga dinyatakan dengan a dan tinggi segitiga dinyatakan dengan t, luas segitiga adalah.

  1. Jajargenjang

Perhatikan bentuk bangunan pada Gambar 4.18. Bangunan tersebut berbentuk segiempat di mana sisi-sisi yang berhadapan sama panjang dan sejajar.

Sekarang, Anda perhatikan setiap sudut-sudut yang berhadapan pada ubin sama besar dan besar sudut-sudut yang bersebelahan saling berpelurus. Bangun datar yang memiliki ciri-ciri seperti bangunan pada Gambar 4.18 disebut jajargenjang. Penampang jajargenjang jika digambar akan tampak sebagai berikut.

Jika keempat sudut pada jajargenjang siku-siku maka akan terbentuk persegipanjang. Seperti pada bangun datar lainnya, keliling jajargenjang adalah jumlah panjang keempat sisinya, yaitu sebagai berikut.

Sebelum mempelajari luas jajargenjang, berikut Anda akan mempelajari terlebih dahulu tinggi dan alas jajargenjang. Seperti pada segitiga, tinggi jajargenjang adalah garis yang tegak lurus dengan kedua sisi jajargenjang yang berhadapan. Sisi yang tegak lurus dengan tinggi disebut alas jajargenjang.

Luas jajargenjang adalah hasil kali alas dengan tingginya. Jika alas jajargenjang dinyatakan dengan a dan tinggi jajargenjang dinyatakan dengan t maka luas jajargenjang dapat dicari dengan rumus berikut.

  1. Belahketupat

Gambar 4.20 merupakan gambar keramik pada dinding sebuah ruangan. Keramik tersebut berbentuk belahketupat. Jika Anda perhatikan keramik tersebut memiliki empat sisi yang sama panjang.

Berbeda dengan persegi, belahketupat seperti pada Gambar 4.20 walaupun sama-sama memiliki sisi-sisi yang sama panjang, pada belahketupat sudut-sudut yang berhadapan adalah sama besar.

Perhatikan belahketupat ABCD berikut.

Jika keempat sudut pada belahketupat siku-siku maka akan terbentuk persegi.

Keliling belahketupat adalah jumlah panjang keempat sisinya. Oleh karena keempat sisi belahketupat sama panjang, maka keliling belahketupat sama dengan empat kali sisinya. Perhatikan Gambar4.22. Jika sisi belahketupat dinyatakan dengan s, keliling belahketupat adalah.

Seperti juga jajargenjang, tinggi belahketupat didefinisikan sebagai garis yang tegak lurus dengan kedua sisi belahketupat yang berhadapan. Sisi yang tegak lurus dengan tinggi disebut alas belahketupat.

Luas belahketupat adalah perkalian antara alas dan tingginya. Jika alas dinyatakan dengan a dan tinggi dinyatakan dengan t, maka luas belahketupat adalah

  1. Layang-Layang

Seperti namanya, layang-layang berbentuk seperti mainan layang-layang. Layang-layang adalah salah satu bangun segiempat yang masing-masing pasangan sisinya sama panjang dan sepasang sudut yang berhadapan sama besar. Perhatikan gambar layang-layang ABCD berikut

Keliling layang-layang adalah jumlah panjang keempat sisinya. Jika panjang sisi layang-layang ABCD adalah AB, BC, CD, dan AD dengan AD = CD dan AB = CB maka keliling layang-layang ABCD

  1. Trapesium

Coba Anda perhatikan bentuk tas tangan pada Gambar 4. 26. Jika Anda perhatikan, tas tangan tersebut memiliki dua sisi yang sejajar tapi tidak sama panjang. Benda dengan ciri-ciri seperti tas tangan tersebut dinamakan trapesium. Trapesium adalah bangun segiempat yang memiliki dua sisi yang sejajar dan tidak sama panjang.

demikianlah artikel dari dosenmipa.com mengenai Sifat Bangun Datar, semoga artiekel ini bermanfaat bagi anda semuanya.